Python3 多线程
多线程类似于同时执行多个不同程序,多线程运行有如下优点:
- 使用线程可以把占据长时间的程序中的任务放到后台去处理。
- 用户界面可以更加吸引人,比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度。
- 程序的运行速度可能加快。
- 在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。
每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。
每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。
指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。
- 线程可以被抢占(中断)。
- 在其他线程正在运行时,线程可以暂时搁置(也称为睡眠) -- 这就是线程的退让。
线程可以分为:
- 内核线程:由操作系统内核创建和撤销。
- 用户线程:不需要内核支持而在用户程序中实现的线程。
Python3 线程中常用的两个模块为:
- _thread
- threading(推荐使用)
thread 模块已被废弃。用户可以使用 threading 模块代替。所以,在 Python3 中不能再使用"thread" 模块。为了兼容性,Python3 将 thread 重命名为 "_thread"。
开始学习Python线程
Python中使用线程有两种方式:函数或者用类来包装线程对象。
函数式:调用 _thread 模块中的start_new_thread()函数来产生新线程。语法如下:
_thread.start_new_thread ( function, args[, kwargs] )
参数说明:
- function - 线程函数。
- args - 传递给线程函数的参数,他必须是个tuple类型。
- kwargs - 可选参数。
实例
import _thread
import time
# 为线程定义一个函数
def print_time( threadName, delay):
count = 0
while count < 5:
time.sleep(delay)
count += 1
print ("%s: %s" % ( threadName, time.ctime(time.time()) ))
# 创建两个线程
try:
_thread.start_new_thread( print_time, ("Thread-1", 2, ) )
_thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
print ("Error: 无法启动线程")
while 1:
pass
执行以上程序输出结果如下:
Thread-1: Wed Jan 5 17:38:08 2022 Thread-2: Wed Jan 5 17:38:10 2022 Thread-1: Wed Jan 5 17:38:10 2022 Thread-1: Wed Jan 5 17:38:12 2022 Thread-2: Wed Jan 5 17:38:14 2022 Thread-1: Wed Jan 5 17:38:14 2022 Thread-1: Wed Jan 5 17:38:16 2022 Thread-2: Wed Jan 5 17:38:18 2022 Thread-2: Wed Jan 5 17:38:22 2022 Thread-2: Wed Jan 5 17:38:26 2022
执行以上程后可以按下 ctrl-c 退出。
线程模块
Python3 通过两个标准库 _thread 和 threading 提供对线程的支持。
_thread 提供了低级别的、原始的线程以及一个简单的锁,它相比于 threading 模块的功能还是比较有限的。
threading 模块除了包含 _thread 模块中的所有方法外,还提供的其他方法:
- threading.current_thread(): 返回当前的线程变量。
- threading.enumerate(): 返回一个包含正在运行的线程的列表。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
- threading.active_count(): 返回正在运行的线程数量,与 len(threading.enumerate()) 有相同的结果。
- threading.Thread(target, args=(), kwargs={}, daemon=None):
- 创建
Thread
类的实例。 target
:线程将要执行的目标函数。args
:目标函数的参数,以元组形式传递。kwargs
:目标函数的关键字参数,以字典形式传递。daemon
:指定线程是否为守护线程。
- 创建
threading.Thread 类提供了以下方法与属性:
__init__(self, group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)
:- 初始化
Thread
对象。 group
:线程组,暂时未使用,保留为将来的扩展。target
:线程将要执行的目标函数。name
:线程的名称。args
:目标函数的参数,以元组形式传递。kwargs
:目标函数的关键字参数,以字典形式传递。daemon
:指定线程是否为守护线程。
- 初始化
start(self)
:- 启动线程。将调用线程的
run()
方法。
- 启动线程。将调用线程的
run(self)
:- 线程在此方法中定义要执行的代码。
join(self, timeout=None)
:- 等待线程终止。默认情况下,
join()
会一直阻塞,直到被调用线程终止。如果指定了timeout
参数,则最多等待timeout
秒。
- 等待线程终止。默认情况下,
is_alive(self)
:- 返回线程是否在运行。如果线程已经启动且尚未终止,则返回
True
,否则返回False
。
- 返回线程是否在运行。如果线程已经启动且尚未终止,则返回
getName(self)
:- 返回线程的名称。
setName(self, name)
:- 设置线程的名称。
ident
属性:- 线程的唯一标识符。
daemon
属性:- 线程的守护标志,用于指示是否是守护线程。
isDaemon()
方法:
一个简单的线程实例:
实例
import time
def print_numbers():
for i in range(5):
time.sleep(1)
print(i)
# 创建线程
thread = threading.Thread(target=print_numbers)
# 启动线程
thread.start()
# 等待线程结束
thread.join()
输出结果为:
0 1 2 3 4
使用 threading 模块创建线程
我们可以通过直接从 threading.Thread 继承创建一个新的子类,并实例化后调用 start() 方法启动新线程,即它调用了线程的 run() 方法:
实例
import threading
import time
exitFlag = 0
class myThread (threading.Thread):
def __init__(self, threadID, name, delay):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.delay = delay
def run(self):
print ("开始线程:" + self.name)
print_time(self.name, self.delay, 5)
print ("退出线程:" + self.name)
def print_time(threadName, delay, counter):
while counter:
if exitFlag:
threadName.exit()
time.sleep(delay)
print ("%s: %s" % (threadName, time.ctime(time.time())))
counter -= 1
# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)
# 开启新线程
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print ("退出主线程")
以上程序执行结果如下;
开始线程:Thread-1 开始线程:Thread-2 Thread-1: Wed Jan 5 17:34:54 2022 Thread-2: Wed Jan 5 17:34:55 2022 Thread-1: Wed Jan 5 17:34:55 2022 Thread-1: Wed Jan 5 17:34:56 2022 Thread-2: Wed Jan 5 17:34:57 2022 Thread-1: Wed Jan 5 17:34:57 2022 Thread-1: Wed Jan 5 17:34:58 2022 退出线程:Thread-1 Thread-2: Wed Jan 5 17:34:59 2022 Thread-2: Wed Jan 5 17:35:01 2022 Thread-2: Wed Jan 5 17:35:03 2022 退出线程:Thread-2 退出主线程
线程同步
如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。
使用 Thread 对象的 Lock 和 Rlock 可以实现简单的线程同步,这两个对象都有 acquire 方法和 release 方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到 acquire 和 release 方法之间。如下:
多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。
考虑这样一种情况:一个列表里所有元素都是 0,线程 "set" 从后向前把所有元素改成 1,而线程 "print" 负责从前往后读取列表并打印。
那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。
锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。
经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。
实例
import threading
import time
class myThread (threading.Thread):
def __init__(self, threadID, name, delay):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.delay = delay
def run(self):
print ("开启线程: " + self.name)
# 获取锁,用于线程同步
threadLock.acquire()
print_time(self.name, self.delay, 3)
# 释放锁,开启下一个线程
threadLock.release()
def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print ("%s: %s" % (threadName, time.ctime(time.time())))
counter -= 1
threadLock = threading.Lock()
threads = []
# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)
# 开启新线程
thread1.start()
thread2.start()
# 添加线程到线程列表
threads.append(thread1)
threads.append(thread2)
# 等待所有线程完成
for t in threads:
t.join()
print ("退出主线程")
执行以上程序,输出结果为:
开启线程: Thread-1 开启线程: Thread-2 Thread-1: Wed Jan 5 17:36:50 2022 Thread-1: Wed Jan 5 17:36:51 2022 Thread-1: Wed Jan 5 17:36:52 2022 Thread-2: Wed Jan 5 17:36:54 2022 Thread-2: Wed Jan 5 17:36:56 2022 Thread-2: Wed Jan 5 17:36:58 2022 退出主线程
线程优先级队列( Queue)
Python 的 Queue 模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列 PriorityQueue。
这些队列都实现了锁原语,能够在多线程中直接使用,可以使用队列来实现线程间的同步。
Queue 模块中的常用方法:
- Queue.qsize() 返回队列的大小
- Queue.empty() 如果队列为空,返回True,反之False
- Queue.full() 如果队列满了,返回True,反之False
- Queue.full 与 maxsize 大小对应
- Queue.get([block[, timeout]])获取队列,timeout等待时间
- Queue.get_nowait() 相当Queue.get(False)
- Queue.put(item) 写入队列,timeout等待时间
- Queue.put_nowait(item) 相当Queue.put(item, False)
- Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
- Queue.join() 实际上意味着等到队列为空,再执行别的操作
实例
import queue
import threading
import time
exitFlag = 0
class myThread (threading.Thread):
def __init__(self, threadID, name, q):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.q = q
def run(self):
print ("开启线程:" + self.name)
process_data(self.name, self.q)
print ("退出线程:" + self.name)
def process_data(threadName, q):
while not exitFlag:
queueLock.acquire()
if not workQueue.empty():
data = q.get()
queueLock.release()
print ("%s processing %s" % (threadName, data))
else:
queueLock.release()
time.sleep(1)
threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = queue.Queue(10)
threads = []
threadID = 1
# 创建新线程
for tName in threadList:
thread = myThread(threadID, tName, workQueue)
thread.start()
threads.append(thread)
threadID += 1
# 填充队列
queueLock.acquire()
for word in nameList:
workQueue.put(word)
queueLock.release()
# 等待队列清空
while not workQueue.empty():
pass
# 通知线程是时候退出
exitFlag = 1
# 等待所有线程完成
for t in threads:
t.join()
print ("退出主线程")
以上程序执行结果:
开启线程:Thread-1 开启线程:Thread-2 开启线程:Thread-3 Thread-3 processing One Thread-1 processing Two Thread-2 processing Three Thread-3 processing Four Thread-1 processing Five 退出线程:Thread-3 退出线程:Thread-2 退出线程:Thread-1 退出主线程
Dexu
724***[email protected]
在线程里,传递参数有三种方法:
1、使用元组传递 threading.Thread(target=方法名,args=(参数1,参数2, ...))
2、使用字典传递 threading.Thread(target=方法名, kwargs={"参数名": 参数1, "参数名": 参数2, ...})
3、混合使用元组和字典 threading.Thread(target=方法名,args=(参数1, 参数2, ...), kwargs={"参数名": 参数1,"参数名": 参数2, ...})
Dexu
724***[email protected]
举世无双古拉顿
184***[email protected]
上面那个理解不了,我这个应该更容易懂:
举世无双古拉顿
184***[email protected]
博大慕
ttt***q.com
上面的太麻烦,还是我这个好理解和使用:
博大慕
ttt***q.com
lijiajun
lij***[email protected]
关于线程优先级队列( Queue)小结:
首先为了体现 queue 特性,代码中理应避免使用 Lock。
队列之于多线程,在于多任务处理时,不便创建过多线程而消耗过量资源,因此queue模块提供了同步的,线程安全的队列类。
lijiajun
lij***[email protected]